Name	

CSI – Final exam (Time 180 Minutes, Max marks 50, Weightage 50%)

Notes:

- This is an open book (only the text book and your notes) exam but you <u>can't</u>
 connect to the internet to google or try the code on the machine before writing
 the answers
- 2. There is no copying allowed. If caught, you and the other party will get a zero (each) No questions asked
- 3. Please write the answers in the space provided. Try to avoid attaching extra sheets as most of the questions need very short and succinct answers.
- 4. Feel free to use sheets to do your work. However please don't attach them to the submission

Q1. [1 mark] Select the correct choice: Which of the following is not a dynamic data structure?

- a. Linked list.
- b. Stack.
- c. Array.
- d. Queues.

Q2. [1 mark] What value does the function my_mystery return when called with a value of 4?

```
Ans: ____
int my_mystery ( int number )
{
  if ( number <= 1 )
        return 1;
  else
        return number * my_mystery( number - 1 );
}</pre>
```

Q3. [2 mark] Provide a short answer (25-30 words) Recursion could be memory-intensive because:

Q4. [1 mark] Select the correct choice: Which of the following statements about stacks is incorrect?

- a. Stacks can be implemented using linked lists.
- b. Stacks are first-in, first-out (FIFO) data structures.
- c. New nodes can only be added to the top of the stack.
- d. The last node of a stack has a null link.
- Q5. [1 mark] In the context of computer science, what does ADT stand for? Ans:
- Q6. [2 marks] Which of the following statements is false?
- A. A queue can be implemented with a singly linked list.
- B. A queue can be implemented with two stacks.
- C. A stack can be implemented with a singly linked list.
- D. A stack can be implemented with two queues.
- E. None of the above.
- **Q7.** [3 marks] The following function finds the maximum value of a given array of integers A[1...n]. But there is a line of code missing. What should it be?

The missing code line (only one line is needed) is:

Q8. [4 marks] Given an array A[0...n] of coefficients and a known value of x, the value of the polynomial P = a[n]xn + a[n-1]xn-1 + ... + a[2]x2 + a[1]x + a[0] can be obtained by straightforward multiplication of its coefficients with its terms. Its value can also be computed using Horner's Rule: P = a[0] + x(a[1] + x(a[2] + ... + x(a[n-1] + x(a[n])) ...))

What does the following code compute? (Assume that the value of x is known, and that m, i, k and P are of the correct types)

Ans:

Q9. [4 marks] There are two algorithms which accept a certain input. The size of this input is denoted by n. The order of the first algorithm is 10 * n * lg n while that of the second is $2 * n^2$ (assume n is an integer). Under what input conditions will the first algorithm be slower than the second? Show your working below

Q10. [3 marks] What will be the output of the following program after compiling? Why (explain in about 50 words)?

```
#include<stdio.h>
int main(){
  int a=5;
  float b;
  printf("%d",sizeof(++a+b));
  printf(" %d",a);
  return 0;
}
```

Q11. [3 marks] What will be the output of the following program after compiling? Why (explain in about 50 words)?

```
#include<stdio.h>
int main(){
  int array[3]={5};
  int i;
  for(i=0;i<=2;i++)
    printf("%d ",array[i]);
  return 0;
}</pre>
```

Q12. [3 marks] What will be the output of the following program after compiling? Why (explain in about 50 words)? [Hint: In case you are wondering, there will be no compilation error!]

```
#include<stdio.h>
void call(int,int,int);
int main(){
  int a=10;
  call(a,a++,++a);
  return 0;
}
void call(int x,int y,int z){
  printf("%d %d %d",x,y,z);
}
```

Q13. [3 marks] What will be the output of the following program after compiling? Why (explain in about 50 words)?

```
#include<stdio.h>
int main(){
  int a=5;
  int b=10;
  {
    int a=2;
    a++; b++;
  }
  printf("%d %d",a,b);
  return 0;
}
```

Q14. [3 marks] What will be the output of the following program after compiling? Why (explain in about 50 words)? [Hint: Some of you may have come across this in your projects]

```
#include<stdio.h>
int main(){
  float f=5.5f;
  float x;
  x=f%2;
  printf("%f",x);
  return 0;
}
```

Q15. [5 marks] What will be the output of the following program after compiling? Why (explain in about 100 words)? [Hint: You need to think on the lines of binary representations of various data types as well as their sizes]

```
#include<stdio.h>
int main(){
  int a = 320;
  char *ptr;
  ptr =( char *)&a;
  printf("%d ",*ptr);
  return 0;
}
```

Q16. [3 marks] What will be the output of the following program after compiling? Why (explain in about 50 words)? [Hint: Some of you may have come across this in your projects]

```
#include<stdio.h>
int main()
{
  char arr[10];
  arr = "ISI";
  printf("%s",arr);
  return 0;
}
```

Q16. [8 marks] We have seen the concept of a linked list. Below is a simple case of a linked list where we define a book as a list structure. The code below that is a sample code that adds a node. For a linked list such as this one, write a small function that will determine if the linked list contains a cycle in it, and, at what node the cycle starts. (**Note**: Marks will be awarded for the correct logic and proper syntax convention.)

```
typedef struct book_details Book;
struct book_details {
  int ISBN;
  char BookTitle[50];
  char AuthorName[50];
  char ClassificationCode[20];
  Book *nextBook;
};

Now let's use this structure
Book * newBook = NULL;
  /* Make the new node */
  newBook = (Book *) malloc(sizeof(Book));
  newBook->ISBN = getISBN();
```